Status Report on Z→ττ Measurement

Alexei Safonov

UC Davis

(for Lepton+Track Working Group)

Outline

- Status of Ingredients: triggers, efficiencies etc.
- Official public plots (APS)
- Backgrounds to Z that were not treated right before – Heavy Flavor
- New approach to backgrounds and Changes in baseline cuts
- Preliminary Results

Recent CDF Notes from LT group

• **Title:** Muon Efficiency for Exotic Lepton Track Trigger

Author(s): S. Baroiant M. Chertok T. Kamon V. Khotilovich T. Ogawa C. Pagliarone A. Safonov E. Vataga CDF Note Number: CDF/ANAL/TRIGGER/CDFR/6358

Pub. Info: CDF Note

• **Title:** XFT Efficiency of the ISOTRACK leg in lepton+track triggers.

Author(s): M. Chertok T. Kamon V. Khotilovich D. Toback T. Ogawa A. Safonov

CDF Note Number: CDF/ANAL/TRIGGER/CDFR/XXXX

Pub. Info: CDF Note

- **Title:** Extraction of Z->tau tau signal using Run II leptpn + track trigger -Electron Channel-**Author(s):** A. Anastassov, S. Baroiant, M. Chertok, J. Conway, S. Demers, M. Goncharov, D. Jang, T. Kamon, K. Kotelnikov, V. Khotilovich, R. Lander, A. Lath, K. McFarland, P. Murat, T. Ogawa, C. Pagliarone, F. Ratnikov, A. Safonov, A. Savoy-Navarro, J.R. Smith, S. Tourneur, E. Vataga, T. Vaiciulis, Z. Wan **CDF Note Number:** CDF/ANAL/EXOTIC/CDFR/6402
- **Title:** Update on the Lepton + Track Trigger in Run II Definition and Physics Goals **Author(s):** A. Savoy-Navarro, T. Ogawa, T. Kamon, M. Chertok, A. Safonov, S. Tourneur **CDF Note Number:** CDF/ANAL/TRIGGER/CDFR/6325
- Title: Measurement of Level 3 Trigger Efficiency for 8 GeV Inclusive Electron Trigger Using Conversions
 Author(s): S. Baroiant, M. Chertok, M. Goncharov, T. Kamon, K. Kotelnikov, V. Khotilovich, R. Lander, T.
 Ogawa, A. Safonov, A. Savoy-Navarro, J.R. Smith, S. Tourneur
 CDF Note Number: CDF/ANAL/TRIGGER/CDFR/6324
- Title: Measurement of Electron Trigger Efficiencies for Level1 and Level2 8 GeV Triggers
 Author(s): S. Baroiant M. Chertok M. Goncharov T. Kamon K. Kotelnikov V. Khotilovich R. Lander T. Ogawa
 A. Safonov A. Savoy-Navarro J.R. Smith S. Tourneur
 CDF Note Number: CDF/ANAL/TRIGGER/CDFR/6257
 Pub. Info: CDF Note

Ingredients

- Trigger Efficiencies:
 - Most of trigger efficiencies are extracted and documented
 - The only missing piece is tau L3 efficiency
- Reconstruction and ID efficiencies:
 - Electrons are almost standard will extrapolate
 ETF efficiencies using MC
 - Tau efficiencies from MC. There are indications that $\pi 0$ reconstruction needs improvements (discussed later).

$Z\rightarrow \tau\tau$ Plots -APS2003

- First public plots
- Shape of QCD backgrounds from Tau Group fake rates
- Fit for the x-section roughly agrees with 240-270 pb Z cross-section
- Unanswered questions:
 - Strange OS/LS balance
 - X-sections based on mass and multiplicity are 40% different
 - Problems even worse if tau PT cut is less than 20 GeV

What Can We Do Then?

- The disagreement indicates that:
 - Backgrounds were determined incorrectly;
 - There is a difference between data and MC that we are not aware of;
 - Discrepancy is especially large for softer taus.

• Strategy:

- Take as large sample as possible drop "good run".
- Drop ET cut on tau this will bring us to the most difficult region;
- Try to understand backgrounds;
- With known backgrounds try to isolate good taus and find what's wrong with MC.

Heavy Flavor: bb-bar

- Contribution is quite large
- Shape of the backgrounds is very different and not described by standard fake rates (those are based on light quarks)
- Circumstantial evidence:
 - Slight changes in electron cuts change tau-candidate multiplicity in data a lot!
- Conclusion: need a better background estimation technique!

Backgrounds - New Approach

- A little phenomenology:
 - When looking for something inside jets (e.g. a photon faked by a jet backgrounds from jet remnants are often flat as a function of isolation).
 - Electrons from W's and Z's are typically highly isolated
- Two types of backgrounds:
 - "Flat" as a function of electronTracking Iso QCD, heavy flavor
 - "Peak" W+jets and such

Are They Really "Flat"+"peak"?

- Look directly at the data left plot.
- Heavy Flavor may seem not obviously flat
 (electron there is "real" from the semi-leptonic
 decays) right plot, Herwig MC for bb-bar.

Removal of "Flat" Backgrounds

- For the number of "flat" background events in the signal region fit "flats" level in (2:8) and extrapolate into (0:2).
- Extend this technique to spectra of other variables (e.g. mass spectrum of background events)— measure the spectrum in the "flat" region, divide by 3 ((8-2)/(2-0)), and subtract from data in signal region.

Data: Removal of "Flats"

- Calculate "flat" background contribution for each bin in tau candidate track multiplicity.
- Take care of the "peaking" backgrounds later

Removal of "Peaks" – Prongs 1, 3

• Simple way:

- Look at LS data. This is 100% backgrounds. Get access over flat background. These are "peaks" in LS data.
- Assume W+Jet is charge-blind and that number of "peaks" in OS is the same (and vary it to estimate systematics)
- Or get ratio from data!

Removal of "Peaks" –Prong 2

- There are no OS or LS here (tau charge is 0, +/-2)
- Simple way just ignore 2-Prong data and not use it.
 - Better way get relative ratio of 2 and 3-Prongs from data (look where transverse mass of e and MET is large these are W+jets). Use 3-Prong "peaks", scale them.
 - One can also plot LS/OS for 1,3 Prong bins to extract LS/OS ratio for "peaking" backgrounds.

Backgrounds

- Sum "flat" (QCD) and "peak" (Wjet/...) and plot multiplicity of tau candidates.
 - "flat" backgrounds do not use any OS/LS factors.
 - "peaking" backgrounds are relatively small and one can vary OS/LS ratio without large effect on the cross-section measurement.
- Data is around 100 pb⁻¹ pre-January shutdown (no good Run selections)
- Ready to compare to MC.

Tau Multiplicity – Fit to MC

- First, add Z→ee
 background (it's
 not factorized out
 b/c it's heavily OS)
 using MC.
- Fit to MC.

- Excellent agreement!
- σ = (380±90)*Ł/L (~270 pb we don't know Ł precisely)
- Next step vary cuts and see if this holds.

Consistency Checks

• Vary initial tau ET cut, re-apply full procedure and re-measure σ^*L/E :

Min "tau" ET	σ*L/Ł
5	380±90
15	390±90
20	350±90
25	335±90
Stop conversion removal	360±100

• Looks good, but there maybe a trend (small now)

Mass Spectrum

- Use same technique for "Effective Mass" (invariant mass of e, tau, MET).
- Combined Fit of 1 and 3 Prong tau mass spectra:

$$\sigma$$
*L/Ł=370±80 pb

• Some (small) difference in the shape of 1-Prong mass.

* Zee background is not included yet

New Found Problems – part 1

- The trend appears to be due to inefficiency of $\pi 0$ reconstruction:
 - Several events at low mass have large unaccounted EM energy.
 - Correction will make data agree with MC better (events with a lost $\pi 0$ from lower mass will migrate to higher mass).
- More pronounced for 1-Prong data (in 3-Prongs more ET is carried by charged tracks?)

New Found Problems – part II

- Previously, we used a cut CaloIso $(0.4)_{\tau}$ /CaloET $_{\tau}$ <0.1
- Use our background subtraction technique and look at this variable!
- This cut is very tight! MC does not reproduce it!
 Larger effect for 3-Prong taus.
 - Simple solution remove this cut
 - Long term need leakage correction, requires significant work but worth the time

Tau Isolation

- For the time being, we chose the easiest fix to minimize differences between Data and MC by effectively removing this cut.
- Switch to absolute isolation of 6 GeV (~no cut at all)

Baseline Cuts

Electron (fiducial)	Comments
ET>10, PT>8; d0 <0.2	
HadEm<0.055+0.0045*E; Lshr<0.2	
CES: $ \Delta Z < 3$; $-1.5 < Q*\Delta X < 3$, $\chi^2_Z < 10$	
EoP<2 for ET>50	
Track Absolute Isolation in 0.4 TIso<2 GeV	Was relative 0.2
Calorimeter Isolation – none (to avoid bias in TIso extrapolations)	Was 3 GeV
Tau (fiducial)	
Seed track PT>6; $ \eta $ <1	
ET>6 (10, 15, 20) GeV	Lower backgrounds at higher PT
Calo Iso < 6 GeV	Was relative 0.1 – problem
$M(trk+\pi 0)<1.8$; Electron removal $\xi>0.1$	
No tracks PT>1, No π 0 PT>0.5 in iso cone	
Event Topology	
PT(e)+PT(MET) >25	
MT(e, MET)<25 (15, 10?) GeV	Controls "peaking" backgrounds

Summary

- Looks like we finally got things under control!
- New baseline cuts are mostly defined:
 - Still want to choose a way to minimize even further the effect of OS=LS assumption
 - Tighter MT cut
 - Extract ratio of OS to LS from high MT region
 - Higher tau PT threshold
- Need to decide what to do with $\pi 0$ reconstruction inefficiency:
 - Leave as it is
 - Apply some quick fix (add a $\pi 0$ by hand if it's clearly missing)
 - Improve efficiency
- Will document things as a CDF note.
- Re-run analysis on the final sample.